• شماره پشتیبانی واتساپ : 09307241915
  • ایمیل : etoolzir@gmail.com

صفحه اصلی دوره ها ارتباط با ما حساب کاربری

آموزش معاملات ارز دیجیتال

با گسترش بازارهای مالی و فراگیر شدن معاملات دارایی های مختلف در بین مردم، روش های نوین معامله گری به تدریج وارد عرصه معاملات شدند.

در سال های اخیر، استفاده از الگوریتم های پیچیده و قدرتمند در معاملات بازارهای مالی بسیار گسترش پیدا کرده است و شاهد پیشرفت چشمگیری در طراحی الگوریتم های معاملاتی بوده ایم. ویژگی مهم معاملات الگوریتمی، دقت و سرعت بالای آن، در تشخیص موقعیت مناسب برای انجام معاملات می باشد.

برای نوشتن یک الگوریتم معاملاتی، زبان های برنامه‌نویسی مختلفی می‌توانند در کنار هم به‌کار گرفته شوند. یکی از گزینه های مناسب برای طراحی یک الگوریتم معاملاتی، استفاده از زبان پایتون می‌باشد.

یکی از ویژگی های زبان پایتون، سادگی کار با داده‌ها در این زبان است. همچنین، وجود تعداد زیادی از کتابخانه های قدرتمند و رایگان در این زبان، موجب شده است تا بتوان تقریبا هرکاری را با این زبان انجام داد.

یکی از حوزه‌هایی که بکارگیری زبان پایتون در آن بسیار مورد توجه قرار گرفته است، حوزه مربوط به بازارهای مالی و کار با داده های مالی است.

در این دوره با استفاده از زبان محبوب پایتون و همچنین با بررسی متد های مختلف تحلیل مالی، تلاش می‌کنیم تا چندین استراتژی معاملاتی را، در بازار های مالی مختلف و به‌طور خاص، بازار رمزارزها پیاده سازی کنیم و با پیاده سازی ساختاری برای سنجش عملکرد استراتژی ها (Backtesting)، میزان بازدهی هرکدام از این استراتژی ها را مشخص کنیم.

همچنین علاوه بر بررسی استراتژی‌های رایج در تحلیل داده های مالی، با معرفی ابزار های مستقل و قدرتمند دیگری از زبان پایتون، قدرت تحلیل ها را بالاتر برده و مواردی مانند تحلیل روانی (Sentiment Analysis) بازار رمزارزها را نیز در قالب پروژه‌هایی در دوره، بررسی خواهیم کرد.

این دوره در قالب ۶ فصل مجزا آماده شده و در هر فصل، قسمتی از مهارت های مورد نیاز برای طراحی و پیاده سازی الگوریتم های معاملاتی خودکار، به تفکیک بیان شده است.

مثال ها و پروژه های این دوره برای رمزارزها طراحی شده اما مباحث تدریس شده در این دوره، همچون الگوریتم های معاملاتی پیاده سازی شده، در بازارهای های مالی دیگر، همانند بازار سهام نیز قابل پیاده سازی می‌باشند.

برای توضیحات بیشتر در رابطه با این دوره و مشاهده برخی پروژه های انجام شده در این دوره، لطفا ویدئوی معرفی دوره را مشاهده نمایید.

پیش نیاز: تسلط نسبی بر زبان پایتون و آشنایی اولیه با کتابخانه‌های pandas, matplotlib و  numpy

papaha
0